对于(1)应有如下的规律:当被开方数扩大(或缩小)100倍,10000倍…时,其算术平方根相应地扩大(或缩小)10倍,100倍… 小结与作业 课堂小结 1、被开方数增大或缩小时,其相应的算术平方根也相应地增大或缩小,因此我们可以利用夹值的方法来求出算术平方根的近似值;
2、利用计算器可以求出任意正数的算术平方根的近似值;
3、被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律是怎样的呢?
4、怎样的数是无限不循环小数? 布置作业 课本第167~168页习题10.1第5、6、9、10题; 本课教育评注(课堂设计理念,实际教学效果及改进设想) 1、本节课首先提出“有多大”的问题,这是一个学生关注的具有挑战性的问题,也是说明引入算术平方根必要性的好问题(如果算术平方根都可以像完全平方数的算术平方根那样求得,恐怕就没有必要花那么多的精力来学习算术平方根了),所以教学中要引起重视.解决这个问题的过程体现了“数学中的无限逼近的思想”并使学生体验“无限不循环”小数的特点(学生对无限的体会没有障碍,但对不循环会因计算实际的局限无法体会,是本节课的一个疑点,教师可适当说明,不要深究).
2、课本的例3是一个实际问题,它有两个作用:一是用算术平方根解决实际问题,二是涉及了一个有理数与一个无理数的大小比较的问题.后者提供的方法在今后的学习中会经常用到,所以要引起重视.
3、利用计算器求一个数的算术平方根是本章的一个重要教学要求,学生掌握其方法应该不成问题,但对精确度和有效数字的要求要重视,另一方面要求学生掌握被开方数的扩大和缩小与平方根的扩大和缩小之间的规律.
1
人教新课标数学七年级第十章《平方根(2)》教学设计由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
人教新课标数学七年级第十章《平方根(2)》教学设计