标签:人教版七年级数学教案,初中数学教案,http://www.yf1234.com
全国初中数学竞赛辅导(初1)第12讲 平行线问题,
证 过B作直线 BD,交l于D.因为AB∥l,CB∥l,所以
∠1=∠ABD,∠2=∠CBD(内错角相等).
又∠1+∠2=180°,所以
∠ABD+∠CBD=180°,
即∠ABC=180°=平角.
A,B,C三点共线.
思考 若将问题加以推广:在l的同侧有n个点A1,A2,…,An-1,An,且有AiAi+1∥l(i=1,2,…,n-1).是否还有同样的结论?
例7 如图1-30所示.∠1=∠2,∠D=90°,EF⊥CD.
求证:∠3=∠B.
分析 如果∠3=∠B,则应需EF∥BC.又知∠1=∠2,则有BC∥AD.从而,应有EF∥AD.这一点从条件EF⊥CD及∠D=90°不难获得.
证 因为∠1=∠2,所以
AD∥BC(内错角相等,两直线平行).
因为∠D=90°及EF⊥CD,所以
AD∥EF(同位角相等,两直线平行).
所以 BC∥EF(平行公理),
所以
∠3=∠B(两直线平行,同位角相等).
练习十二
1.如图1-31所示.已知AB∥CD,∠B=100°,EF平分∠BEC,EG⊥EF.求∠BEG和∠DEG.
2.如图1-32所示.CD是∠ACB的平分线,∠ACB=40°,∠B=70°,DE∥BC.求∠EDC和∠BDC的度数.
3.如图1-33所示.AB∥CD,∠BAE=30°,∠DCE=60°,EF,EG三等分∠AEC.问:EF与EG中有没有与AB平行的直线,为什么?
4.证明:五边形内角和等于540°.
5.如图1-34所示.已知CD平分∠ACB,且DE∥ACCD∥EF.求证:EF平分∠DEB.
全国初中数学竞赛辅导(初1)第12讲 平行线问题由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
全国初中数学竞赛辅导(初1)第12讲 平行线问题
全国初中数学竞赛辅导(初1)第12讲 平行线问题
浏览次数: 625次|
发布日期:10-05 21:45:56 | 七年级数学教案