对数

浏览次数: 332次| 发布日期:06-12 12:25:58 | 高一数学教案
标签:人教版高一数学教案,新课程高一数学教案,http://www.yf1234.com 对数,
  (1)    (2)     (3)

  由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:

  

  可由学生说出 .得到大家认可后,再让学生完成证明.

  证明:设 ,由指数运算法则得

  

  教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?

  有的学生可能会提出把 看成 再用法则,但无法解决 计算问题,再引导学生如何回避 的问题.经思考可以得到如下证法

.或证明如下

,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)

请学生完成下面的计算

  (1)    (2)

  计算后再提出刚才没有解决的问题即 并将其一般化改为 学生在说出结论的同时就可给出证明如下:

  设 教师还可让学生思考是否还有其它证明方法,可在课下研究.

  将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则

  (1) 了解法则的由来.(怎么证)

  (2) 掌握法则的内容.(用符号语言和文字语言叙述)

  (3) 法则使用的条件.(使每一个对数都有意义)

  (4) 法则的功能.(要求能正反使用)

三.巩固练习

例2.计算

  (1)    (2)    (3)  

   (4)     (5)         (6)

解答略

  对学生的解答进行点评.

例3.已知 ,用 的式子表示

  (1)   (2)   (3)

由学生上黑板写出求解过程.

四.小结

  1.运算法则的内容

  2.运算法则的推导与证明

  3.运算法则的使用

五.作业略

六.板书设计

二.对数运算法则      例1                   例3

1. 内容

(1)

(2)

(3)            例2                     小结

2. 证明

3. 对法则的认识  (1)条件     (2)功能

  探究活动

试研究如下问题.

  (1)已知 求证:

  (2)若 都是正数且至少有一个不为1,且 ,则 之间的关系是_____________________.

答案:

  (1)证明略

  (2)




对数由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com

上一页  [1] [2] [3] 


对数

《对数》相关文章: