www.yf1234.com 则 ”形式的复合命题.
2.由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去结概念“下定义”,去体会概念的本质属性.
3.由于“充要条件”与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入“充分条件”的概念,进而引入“必要条件”的概念.
4.教材中对“充分条件”、“必要条件”的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识“充分条件”的概念,从互为逆否命题的等价性来引出“必要条件”的概念.
教学设计示例
充要条件
教学目标:
(1)正确理解充分条件、必要条件和充要条件的概念;
(2)能正确判断是充分条件、必要条件还是充要条件;
(3)培养学生的逻辑思维能力及归纳总结能力;
(4)在充要条件的教学中,培养等价转化思想.
教学重点难点:关于充要条件的判断
教学用具:幻灯机或实物投影仪
教学过程设计
1.复习引入
练习:判断下列命题是真命题还是假命题(用幻灯投影):
(1)若 ,则 ;
(2)若 ,则 ;
(3)全等三角形的面积相等;
(4)对角线互相垂直的四边形是菱形;
(5)若 ,则 ;
(6)若方程 有两个不等的实数解,则 .
(学生口答,教师板书.)
(1)、(3)、(6)是真命题,(2)、(4)、(5)是假命题.
置疑:对于命题“若 ,则 ”,有时是真命题,有时是假命题.如何判断其真假的?
答:看 能不能推出
充分条件与必要条件由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com ,如果 能推出 ,则原命题是真命题,否则就是假命题.
对于命题“若 ,则 ”,如果由 经过推理能推出 ,也就是说,如果 成立,那么 一定成立.换句话说,只要有条件 就能充分地保证结论 的成立,这时我们称条件 是 成立的充分条件,记作 .
2.讲授新课
(板书充分条件的定义.)
一般地,如果已知 ,那么我们就说 是 成立的充分条件.
提问:请用充分条件来叙述上述(1)、(3)、(6)的条件与结论之间的关系.
(学生口答)
(1)“ ,”是“
充分条件与必要条件由www.yf1234.com收集及整理,转载请说明出处www.yf1234.comwww.yf1234.com ”成立的充分条件;
(2)“三角形全等”是“三角形面积相等”成立的充分条件;
充分条件与必要条件