当前位置:扬帆学习网文章频道免费教案数学教案高二数学教案函数的单调性

函数的单调性

浏览次数: 110次| 发布日期:06-12 12:29:04 | 高二数学教案
标签:人教版高二数学教案,高二上学期数学教案,http://www.yf1234.com 函数的单调性,
1)<f(x2).”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).

     这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以

    

     小.

     (对学生的做法进行分析,把证明过程步骤化,可以形成思维的定势.在学生刚刚接触一个新的知识时,思维定势对理解知识本身是有益的,同时对学生养成一定的思维习惯,形成一定的解题思路也是有帮助的.)

    

     调函数吗?并用定义证明你的结论.

    

    

     师:你的结论是什么呢?

    

     上都是减函数,因此我觉得它在定义域(-∞,0)∪(0,+∞)上是减函数.

函数的单调性由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com
     生乙:我有不同的意见,我认为这个函数不是整个定义域内的减函数,因为它不符合减函数的定义.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2显然成立,而f(x1)<0,f(x2)>0,显然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定义域内的减函数.

    

     生:也不能这样认为,因为由图象可知,它分别在(-∞,0)和(0,+∞)上都是减函数.

    

     域内的增函数,也不是定义域内的减函数,它在(-∞,0)和(0,+∞)每一个单调区间内都是减函数.因此在函数的几个单调增(减)区间之间不要用符号“∪”连接.另外,x=0不是定义域中的元素,此时不要写成闭区间.

    

    

     上是减函数.

     (教师巡视.对学生证明中出现的问题给予点拔.可依据学生的问题,给出下面的提示:

     (1)分式问题化简方法一般是通分.

     (2)要说明三个代数式的符号:k,x1·x2,x2-x1

    

     要注意在不等式两边同乘以一个负数的时候,不等号方向要改变.

     对学生的解答进行简单的分析小结,点出学生在证明过程中所出现的问题,引起全体学生的重视.)

     四、课堂小结

     师:请同学小结一下这节课的主要内容,有哪些是应该特别注意的?

     (请一个思路清晰,善于表达的学生口述,教师可从中给予提示.)

     生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明函数的单调性时,应该注意证明的四个步骤.

上一页  [1] [2] [3] [4] [5] [6]  下一页


函数的单调性

《函数的单调性》相关文章: