同底数幂的除法
一、教学目标
(一)知识目标
1.经历探索同底数幂除法的运算性质的过程,进一步体会幂的意义.
2.了解同底数幂除法的运算性质,并能解决一些实际问题.
3.理解零指数幂和负整数指数幂的意义.
(二)能力目标
1.在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力.
2.提高学生观察、归纳、类比、概括等能力.
(三)情感目标
在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养.
二、教学重难点
(一)教学重点
同底数幂除法的运算性质及其应用.
(二)教学难点
零指数幂和负整数指数幂的意义.
三、教具准备
投影片五张
第一张:提出问题,记作(§1.5 A)
第二张:做一做,记作(§1.5 B)
第三张:例1,记作(§1.5 C)
第四张:想一想,猜一猜,记作(§1.5 D)
第五张:例2,记作(§1.5 E)
四、教学过程
Ⅰ.创设问题情景,引入新课
出示投影片(§1.5 A):
图1-15
一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?你是怎样计算的?
[师]这是和数学有密切联系的现实世界中的一个问题,下面请同学们根据幂的意义和除法的意义,得出这个问题的结果.
[生]根据题意,可得需要这种杀菌剂1012÷109个.
而1012÷109==
=10×10×10=1000(个)
[生]我是这样算1012÷109的.
1012÷109=(109×103)÷109
==103=1000.
[师]1012÷109是怎样的一种运算呢?
[生]1012×109是同底数幂的乘法运算,1012÷109我们就称它为同底数幂的除法运算.
[师]很好!通过上面的问题,我们会发现同底数幂的除法运算和现实世界有密切的联系,因此我们有必要了解同底数幂除法的运算性质.
Ⅱ.了解同底数幂除法的运算及其应用
[师]下面我们就先来看同底数幂除法的几个特例,并从中归纳出同底数幂除法的运算性质.(出示投影片§1.5 B)
做一做:计算下列各式,并说明理由(m>n).
(1)108÷105;(2)10m÷10n;(3)(-3)m÷(-3)n.
[生]解:(1)108÷105
=(105×103)÷105 ——逆用同底数幂乘法的性质
=103;
[生]解:(1)108÷105
== ——幂的意义
=1000=103;
[生]解:(2)10m÷10n
= ——幂的意义
==10m-n ——乘方的意义
(3)(-3)m÷(-3)n
= ——幂的意义
= ——约分
=(-3)m-n ——乘方的意义
[师]我们利用幂的意义,得到:
(1)108÷105=103=108-5;
(2)10m÷10n=10m-n(m>n);
(3)(-3)m÷(-3)n=(-3)m-n(m>n).
观察上面三个式子,运算前后指数和底数发生了怎样的变化?你能归纳出同底数幂除法的运算性质吗?
[生]从上面三个式子中发现,运算前后的底数没有变化,商的指数是被除数与除数指数的差.
[生]从以上三个特例,可以归纳出同底数幂的运算性质:am÷an=am-n(m,n是正整数且m>n).
[生]小括号内的条件不完整.在同底数幂除法中有一个最不能忽略的问题:除数不能为0.不然这个运算性质无意义.所以在同底数幂的运算性质中规定这里的a不为0,记作a≠0.在前面的三个幂的运算性质中,a可取任意数或整式,所以没有此规定.
[师]很好!这位同学考虑问题很全面.所以同底数幂的除法的运算性质为:
人教新课标数学七年级《同底数幂的除法》教学设计