当前位置:扬帆学习网文章频道免费教案数学教案高二数学教案算术平均数与几何平均数(一)

算术平均数与几何平均数(一)

浏览次数: 694次| 发布日期:06-12 12:28:12 | 高二数学教案
标签:人教版高二数学教案,高二上学期数学教案,http://www.yf1234.com 算术平均数与几何平均数(一),
都是正数,求证:

  分析:此题要求学生注意与均值不等式定理的“形”上发生联系,从而正确运用,同时加强对均值不等式定理的条件的认识.

  证明:由 都是正数,得

  

  即

  例3  某工厂要建造一个长方体无盖贮水池,其容积为 ,深为3m,如果池底每 的造价为150元,池壁每 的造价为120元,问怎样设计水池能使总造价最低,最低总造价是多少元?

  分析:此题首先需要由实际问题向数学问题转化,即建立函数关系式,然后求函数的最值,其中用到了均值不等式定理.

  解:设水池底面一边的长度为xm,水池的总造价为l元,根据题意,得

  当

  因此,当水池的底面是边长为40m的正方形时,水池的总造价最低,最低总造价是297600元.

  评述:此题既是不等式性质在实际中的应用,应注意数学语言的应用即函数解析式的建立,又是不等式性质在求最值中的应用,应注意不等式性质的适用条件.

算术平均数与几何平均数(一)由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com

  为了进一步熟悉均值不等式定理在证明不等式与求函数最值中的应用,我们来进行课堂练习.

三、课堂练习

  课本P11练习1,4

要    求:学生板演,老师讲评.

课堂小结:

  通过本节学习,要求大家进一步掌握利用均值不等式定理证明不等式及求函数的最值,并认识到它在实际问题中的应用.

课后作业:

  习题6.2    5,6,7

板书设计:

均值不等式                  例2 §6.2.2      例3         学生

定理回顾                    ……           ……

……                        ……           ……         练习

……                        ……           ……



算术平均数与几何平均数(一)由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com

上一页  [1] [2] [3] [4] 


算术平均数与几何平均数(一)