算术平均数与几何平均数(二)由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com
应用定理时要注意定理的适用条件,即“正数、定值、相等”三个条件同时成立,且会灵活转化问题,达到化归的目的.
设计意图:培养学生对所学知识进行概括归纳的能力,巩固所学知识.
(四)布置作业
1.课本作业:P ,6,7.
2.思考题:设 ,求函数 的最值.
3.研究性题:某种汽车购车时费用为10万元,每年保险、养路、汽车费用9千元;汽车的维修费各年为:第一年2千元,第二年4千元,依每年2千元的增量逐年递增.问这种汽车最多使用多少年报废最合算(即使用多少年的平均费用最少)?
设计意图:课本作业供学生巩固基础知识;思考题供学有余力的学生练习,使学生能灵活运用定理解决某些数学问题;研究性题培养学生应用数学知识解决实际问题的能力.
(五)课后点评
1.关于新课引入设计的想法:
导入这一环节是调动学生学习的积极性,激发学生探究精神的重要环节,本节课开始给出一个引例,通过探究解决此问题的各种解法,产生用平均值定理求最值,点明课题.事实上,在解决引例问题的过程中也恰恰突出了教学重点.
2.关于课堂练习设计的想法:
正确理解和使用平均值定理求某些函数的最值是教学难点.为突破难点,教师单方面强调是远远不够的,只有让学生通过自己的思考、尝试,发现使用定理的三个条件缺一不可,才能大大加深学生对正确使用定理的理解,设计解法正误讨论能够使学生尝试失败,并从失败中找到错误原因,加深了对正确解法的理解,真正把新知识纳入到原有认知结构中.
3.培养应用意识.
教学中应不失时机地使学生认识到数学源于客观世界并反作用干客观世界.为增强学生的应用意识,在平时教学中就应适当增加解答应用问题的教学.本节课中设计了两道应用问题,用刚刚学过的数学知识解决了问题,使学生不禁感到“数学有用,要用数学”.
作业解答
思考题:
.当且仅当 ,即 时,上式取等号.所以当 时,函数y有最小值9,无最大值.
研究性题:设使用 年报废最合算,由题意有;
年平均费用
当且仅当 ,即 时,取得最小值,即使用10年报废最合算,年平均费用3万元.
算术平均数与几何平均数(二)由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
算术平均数与几何平均数(二)