标签:九年级上册数学教案,初中数学教案,http://www.yf1234.com
北师大版数学九年级《线段的垂直平分线(第二课时)》教学设计,
线段的垂直平分线(第二课时)
教学目标:
1、经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力。
2、能够证明线段垂直平分线的性质定理、判定定理及其相关结论。
3、能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作出等腰三角形。
教学过程:
引入:
剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你发现了什么?当利用尺规作出三角形三条边的垂直平分线时,你是否也发现了同样的结论?
定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
证明:在△ABC中,设AB、BC的垂直平分线相交于点P,连接AP、BP、CP,
∵点P在线段AB的垂直平分线上
∴PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等)
同理:PB=PC
∴PA=PC
∴点P在AC的垂直平分线上
(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)。
∴AB,BC,AC的垂直平分线相交于点P。
议一议:1、已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?(这样的三角形能作出无数多个,它们不都全等)
2、已知等腰三角形底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?(满足条件的等腰三角形可和出两个,分加位于已知边的两侧,它们全等)。
做一做:
已知底边上的高,求作等腰三角形。
已知:线段a、b
求作:△ABC,使AB=AC,且BC=a,高AD=h.
作法:
(1)作线段BC=a(如图); (2)作线段BC的垂直平分线L,交BC于点D,
(3)在L上作线段DA,使DA=h (4)连接AB,AC 作业: 6.教学后记:
北师大版数学九年级《线段的垂直平分线(第二课时)》教学设计由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
北师大版数学九年级《线段的垂直平分线(第二课时)》教学设计
北师大版数学九年级《线段的垂直平分线(第二课时)》教学设计
浏览次数: 741次|
发布日期:06-12 12:23:04 | 九年级数学教案