(5) 8 700 000; (6) 500 900 000; (7)374.2; (8) 7000.5.
(2)下列用科学记数法记出的数,原来各是什么数?
(1)2×106;(2)9.6×105;(3)7.58×107;(4)4.31×105;
(5)6.03×108;(6)5.002×107;(7)5.016×102;(8)7.7105×104.
3.用科学记数法记出下列各数:
(1)地球离太阳约有一亿五千万千米;
(2)地球上煤的储量估计为15万亿吨以上;
(3)月球的质量约是7 340 000 000 000 000万吨;
(4)银河系中的恒星数约是160 000 000 000个;
(5)地球绕太阳公转的轨道半径约是149 000 000千米;
(6)1cm3的空气中约有 25 000 000 000 000 000 000个分子.
4.一天有8.64×104秒,一年如果按365天计算,一年有多少秒?(用科学记数法表示)
5.地球绕太阳转动(即地球的公转)每小时约通过1.1×105千米,声音在空气中传播,每小时约通过1.2×103千米.地球公转的速度与声音的速度哪个大?
八、板书设计
§2.10有理数的乘方(2)
(一)知识回顾 (三)例题解析 (五)课堂小结
例4、例5
(二)观察发现 (四)课堂练习 练习设计
九、教学后记
在上一节课中,学生已学习了有理数乘方的概念,知道了有理数乘方的意义,会利用有理数乘方法则进行有理数乘方运算.本节课在复习上节课内容的基础上,使学生进一步理解乘方的意义,并能用科学记数法表示大于10的数.本节课的重点和难点都是科学记数法.为此,通过实例,引入了科学记数法,而通过例题的讲授,使学生知道怎样用科学记数法表示绝对值大于10的数.
第三十五课时
一、课题 §2.11有理数的混合运算(1)
二、教学目标
1.进一步掌握有理数的运算法则和运算律;
2.使学生能够熟练地按有理数运算顺序进行混合运算;
3.注意培养学生的运算能力.
三、教学重点和难点
重点:有理数的混合运算.
难点:准确地掌握有理数的运算顺序和运算中的符号问题.
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有认知结构提出问题
1.计算(五分钟练习):
(5)-252; (6)(-2)3;(7)-7+3-6; (8)(-3)×(-8)×25;
(13)(-616)÷(-28); (14)-100-27; (15)(-1)101; (16)021;
(17)(-2)4; (18)(-4)2; (19)-32; (20)-23;
(24)3.4×104÷(-5).
2.说一说我们学过的有理数的运算律:
加法交换律:a+b=b+a;
加法结合律:(a+b)+c=a+(b+c);
乘法交换律:ab=ba;
乘法结合律:(ab)c=a(bc);
乘法分配律:a(b+c)=ab+ac.
(二)、讲授新课
前面我们已经学习了有理数的加、减、乘、除、乘方等运算,若在一个算式里,含有以上的混合运算,按怎样的顺序进行运算?
1.在只有加减或只有乘除的同一级运算中,按照式子的顺序从左向右依次进行.
北师大版数学七年级上册教案全集由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com 审题:(1)运算顺序如何?
(2)符号如何?
说明:含有带分数的加减法,方法是将整数部分和分数部分相加,再计算结果.带分数分成整数部分和分数部分时的符号与原带分数的符号相同.
课堂练习
审题:运算顺序如何确定?
注意结果中的负号不能丢.
课堂练习
计算:(1)-2.5×(-4.8)×(0.09)÷(-0.27);
2.在没有括号的不同级运算中,先算乘方再算乘除,最后算加减.
例3 计算:
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] 下一页
北师大版数学七年级上册教案全集