1.甲队有32人,乙队有28人,如果要使甲队人数是乙队人数的2倍,那么需从乙队抽调多少人到甲队?
2.甲、乙两个水池共存水40吨,甲池注进水4吨,乙池放出水8吨后,两池的水正好相等.两池原来各有水多少吨?
3.甲槽有水34升,乙槽有水18升.现在两槽同时排水,都是平均每分排出2升.多少分钟后,甲槽的水是乙槽的水的3倍?
4.某队有林场108公顷,牧场54公顷.现在要栽培一种新的果树,把一部分牧场改为林场,使牧场面积只占林场面积的20%.改为林场的牧场面积是多少公顷?
5.某渔场的甲仓库存鱼30吨,乙仓库存鱼40吨.要再往这两个仓库运送80吨鱼,使甲仓库的存鱼量为乙仓库的存鱼量的1.5倍.应往甲仓库和乙仓库分别运送多少吨鱼?
(思考题)
三年前父亲的年龄是儿子年龄的4倍,三年后父亲年龄是儿子年龄的3倍,求父子现年各多少岁?
八、板书设计
§5.2一元一次方程的应用(5)
(一)知识回顾 (三)例题解析 (五)课堂小结
例1、例2
(二)观察发现 (四)课堂练习 练习设计
九、教学后记
调配问题中既有劳力调配问题,又有事物调配的问题,且这类问题的应用较广泛.由于这类问题都可用二元一次方程组来求解,因此较复杂的应用题应放到二元一次方程组的章节中去处理.基于上述原因,本教学过程设计时所安排的例题、练习题、及作业题均以用一元一次方程解决较简单为标准.
第七十四课时
一、课题 §5.2一元一次方程的应用(6)
二、教学目标
1.使学生理解用一元一次方程解工程问题的规律;
2.通过对“工程问题”的分析,进一步培养学生用代数方法解应用题的能力;
3.通过本节课的教学,使学生养成正确思考、善于思考的良好习惯.
三、教学重点和难点
重点:列方程解工程问题.
难点:把全部工作量看作1.
四、教学手段
引导——活动——讨论
五、教学方法
启发式教学
六、教学过程
(一)、从学生原有的认知结构提出问题
1.小学时学习过工程问题,在工程问题中涉及三个量:工作量、工作效率与工作时间.它们之间存在怎样的关系?
(工作量=工作效率×工作时间,
2.一件工作,若甲单独做2小时完成,那么甲单独做1小时完成全部工作量的多少?
3.一件工作,若甲单独做a小时完成,则甲单独做1小时,完成全部工作量的多少?m小时完成全部工作量的多少?a小时完成全部工作量的多少?
4.一件工作,若甲单独做7天完成,乙单独做5天完成,甲、乙合做一天完成全部工作量的多少?甲、乙合作2天完成全部工作量的多少?甲、乙合作x天完成全部工作量的多少?
(上述问题均用投影给出,请学生回答,教师补充)
今天学习列方程解工程问题.
(二)、讲授新课
例1 件工作,甲单独做20小时完成,乙单独做12小时完成.现在先由甲单独做4小时,剩下的部分由甲、乙合做,需要几小时完成?
师生共同分析,先画示意图(剩下部分需x小时完成),后找出题中相等关系.
相等关系:
甲完成工作量+乙完成工作量=全部工作量.
解:(由学生完成)
北师大版数学七年级上册教案全集由www.yf1234.com收集及整理,转载请说明出处www.yf1234.com
www.yf1234.com 设剩下的部分需要x小时完成,依题意,得
解这个方程,得 x=6
答:剩下的部分需要6小时完成.
此时,教师应指出:工程问题除用直线型示意图外,还常用圆形示意图进行分析,整个圆面积表示全部工作1.如右图.
例2 一件工作,甲独做需30小时完成,由甲、乙合做需24小时完成,现由甲独做10小时后,剩下部分由甲、乙合作,问还需几小时完成?
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] 下一页
北师大版数学七年级上册教案全集