=x+x+2x+4y
=4x+4y;
(2)(a+4b)-(3a-6b)
=a+2b-a+2b
=-a+4b
(四)、小结
1、今天,我们类比着数的去括号法则,得到了多项式的去括号法则
2、大家应熟记法则,并能根据法则进行去括号运算现在,大家再一起跟着我说一遍:去括号,看符号:是“+”号,不变号;是“-”号,全变号
七、练习设计
化简:
(1)(2x-3y)+(5x+4y); (2)(8a-7b)-(4a-5b); (3)a-(2a+b)+2(a-2b);
(4)3(5x+4)-(3x-5); (5)(8x-3y)-(4x+3y-z)+2z;(6)-5x2+(5x-8x2)-(-12x2+4x)+;
(7)2-(1+x)+(1+x+x2-x2);(8)3a2+a2-(2a2-2a)+(3a-a2);
(9)2a-3b+[4a-(3a-b)];(10)3b-2c-[-4a+(c+3b)]+c.
八、板书设计
§3.5去括号(1)
(一)知识回顾 (三)例题解析 (五)课堂小结
例4、例5
(二)观察发现 (四)课堂练习 练习设计
九、教学后记
1通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则这样的设计起点低,学生学起来更自然,对新知识更容易接受类比是一种重要的数学思想方法,值得引起注意另外,这个设计也体现了“温故而知新”的学习方法和“以旧引新”的教学设计原则
2在总结出去括号法则后,又给出了一个顺口溜,这是考虑到学生年龄小,顺口溜更便于记忆,而且也增加了学习的情趣
3本设计中,安排了例1到例6的一个组题,进行由浅入深、循序渐进的训练,以使学生更好地全方位地掌握去括号法则另外,还安排了某些变式训练,既能让学生进一步熟悉去括号法则,又训练了他们的逆向思维
第四十六课时
一、课题 §3.4去括号(2)
二、教学目标
1、使学生初步掌握添括号法则;
2、会运用添括号法则进行多项式变项;
3、继续学习“类比”的方法;理解“去括号”与“添括号”的辩证关系
三、教学重点和难点
重点:添括号法则;法则的应用
难点:添上“-”号和括号,括到括号里的各项全变号
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、复习旧知识,引出新知识
1、提问去括号法则
2、练习去括号:
(1)a+(b-c); (2)a-(-b+c); (3)(a+b)+(c+d); (4)-(a+b)-(-c-d);
(5)(a-b)-(-c+d); (6)-(a-b)+(-c-d)
3、上节课,我们学习了去括号,在计算中,有时候是需要去括号,有时候又需添括号,比如下面两题:
(1)102+199-99; (2)5040-297-1503
怎样算更简便?
找学生回答,教师将过程写出来
解:(1)102+199-99 (2)5040-297-1503
=102+(199-99) =5040-(297+1503)
=102+100 =5040-1800
=202; =3240
仿照数的添括号方法,完成下列问题:
a+b-c=a+( );a+b-c=a-( )
引导学生通过类比数的加括号方法,填出括号里的各项,进而总结添括号法则
(二)、新知识的学习
添括号法则:
添上“+”号和括号,括到括号里的各项都不变号;
添上“-”号和括号,括到括号里的各项都改变符号;
此法则让学生自己总结,教师进行修改、补充
(三)、新知识的应用
例1 按要求,将多项式3a-2b+c添上括号:
(1)把它放在前面带有“+”号的括号里;
(2)把它放在前面带有“-”号的括号里
此题是添括号法则的直接应用,为了更加明确起见,在解题时,先写出3a-2b+c=+( )=-( )的形式,再让学生往里填空,特别注意,添“-”号和括号,括到括号里的各项全变号
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] 下一页
北师大版数学七年级上册教案全集