www.yf1234.com 3.教师指出:这个实际问题实质上就是转化为“从直线外一点画出已知直线的垂线问题.”那么,怎样用你手中的三角板画出这条垂线呢?
4.在学生画出垂线的基础上,教师总结出用三角板画垂线的基本方法.强调用两条直角边“一贴”:贴住已知直线,“一靠”:靠住已知点再画线.并引导学生思考:这样画出的为何是已知直线的垂线?
5.引导学生在作垂线的实践活动中,发现垂线的性质.
(1)如图2-12(1)中,过点A,作直线BD的垂线.在图2-12(2)中,过A点分别作BD和DE的垂线.
(2)发现垂线的性质
在学生熟练地作出各条垂线之后,教师继续提问:(或以其它形式)过A点还能作出别的垂线吗?
在学生回答的基础上,教师引导学生发现以下两个结论:
①过A点作BD或DE的垂线有没有,有.
②过A点作BD或DE的垂线有几条,只一条.
在此基础上,又引导学生概括出:
垂线的第一个性质公理:过一点有且只有一条直线与已知直线垂直.
注:①“有且只有”中,“有”指“存在”,“只有”指“唯一”.
②“过一点”的点在直线外,或在直线上都可以.
(四)、应用举例,变式练习
例1:如图2-13(1),过A点分别作AB,BC和CA的垂线.
练习1,如图2-13(2),∠B=90°,过B分别作AB,BC,CA的垂线.
练习2,如图2-13(3),过B点作AC的垂线,过A点作BC的垂线,过C点作AB的垂线.
练习3,如图2-14,过P点作AB,BC,CD和DA的垂线.
讲完这个例题和练习之后,对过已知点,作已知线段的垂线的问题加以总结,重点是:有时需要对线段加以延长,作延长线的垂线.
(五)、小结
师生共同总结出本节课所学的内容.
1.理解垂线的意义.
2.根据垂线的意义,过一点画一条直线的垂线.
3.理解垂线的第一性质公理.
七、练习设计
1.选用课本中的题.
2.以下6道题供选用.
(1)画∠AOB=45°,在∠AOB内找一点F,过F点作OA,OB的垂线.
(2)画∠AOB=120°,画∠AOB的平分线OE,在OE上任取一点F,过F作OA,OB的垂线.
(3)如图2-15,AO⊥BO于O,求∠AOD与∠BOC的和.
(4)如图2-16,直线AB⊥CD于O,过O点的直线EF平分∠AOD,求∠COE的大小.
(5)如图2-17,AB⊥EF于O,CD⊥AB于Q,指出∠AQD与∠AOF的关系.
(6)填空:如图2-18,已知AB与EF相交于O,∠AOE=30°,AB⊥CD于O.求∠EOD的度数.
解:因为AB⊥CD于O,( )
所以∠COA=90°.( )
又∠AOC+∠AOD=180°,
( )
所以∠AOD=90°.
又∠AOE=30°,( )
所以∠EOD=60°.
八、板书设计
§4.6 垂直
(一)知识回顾 (三)例题解析 (五)课堂小结
例1、例2
(二)观察发现 (四)课堂练习 练习设计
九、教学后记
1.本教案的教学时间为1课时45分钟.
2.本课时教学设计的主导思想是:应用“发现法”教学,使学生在自己动手的基础上,发现垂线的性质.
3.在学生理解了两条直线互相垂直的意义以后,还可以让学生举一些现实生活中的实例,如:桌子的两条相交的边,书的两边,房子的一边与另一边,电线与电线杆等,这些感性的知识有利于加强学生对垂线的理解,同时也可以使学生认识到垂直的情况在实际中的应用是十分广泛的,因此我们要把它的性质讨论清楚.
4.怎样过直线外一点作已知直线的垂线,在给出具体的例子时,可以让学生充分讨论,并想象在体育课中,体育教师是怎样量这个距离的.有的人想让多量点,都采取了什么手段,(这里还隐含着垂线的第二个性质)学生在动手动脑的过程中能很快得到垂线的性质,这时教师可以充分肯定学生的探索精神,并告诉他们:你们发现了一个公理,不是只有科学家才能发现和发明,每个人只要开动脑筋,身边就有很多规律性的东西可以发现
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] [57] [58] [59] [60] [61] [62] [63] [64] [65] [66] [67] [68] [69] [70] [71] [72] [73] [74] [75] [76] [77] [78] [79] [80] 下一页
北师大版数学七年级上册教案全集